skip to main content


Search for: All records

Creators/Authors contains: "Traschen, Jennie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vereshchagin, G. ; Ruffini, R. (Ed.)
    The symmetric two-point function for a massless, minimally coupled scalar field in the Unruh state is examined for Schwarzschild-de Sitter spacetime in two dimensions. This function grows linearly in terms of a time coordinate that is well-defined on the future black hole and cosmological horizons, when the points are split in the space direction. This type of behavior also occurs in two dimensions for other static black hole spacetimes when the field is in the Unruh state, and at late times it occurs in spacetimes where a black hole forms from the collapse of a null shell. The generalization to the case of the symmetric two-point function in two dimensions for a massive scalar field in Schwarzschild-de Sitter spacetime is discussed. 
    more » « less
  2. A bstract Two-dimensional Schwarzschild-de Sitter is a convenient spacetime in which to study the effects of horizons on quantum fields since the spacetime contains two horizons, and the wave equation for a massless minimally coupled scalar field can be solved exactly. The two-point correlation function of a massless scalar is computed in the Unruh state. It is found that the field correlations grow linearly in terms of a particular time coordinate that is good in the future development of the past horizons, and that the rate of growth is equal to the sum of the black hole plus cosmological surface gravities. This time dependence results from additive contributions of each horizon component of the past Cauchy surface that is used to define the state. The state becomes the Bunch-Davies vacuum in the cosmological far field limit. The two point function for the field velocities is also analyzed and a peak is found when one point is between the black hole and cosmological horizons and one point is outside the future cosmological horizon. 
    more » « less